
2007 Invited Workshop on Pen-Centric Computing

Microsoft Center for Research on Pen-Centric Computing
of Brown University and Microsoft Research

March 26-28, 2007
Providence, RI

Workshop Summary
Summary compiled by

Richard Davis, University of California at Berkeley
Rosemary Simpson, Brown University

Introduction

In March of 2007, Microsoft Corporation, Brown University, and the United States Disruptive
Technology Office brought together approximately 30 pen-computing researchers from universities and
industrial research labs around the world. These researchers were drawn in by a common but elusive
vision of "pen-centric" computing. This document gives a summary of the public discussions at the
workshop.

"Pen-centric" computing is a vision of pen computing in which the pen is more than a substitute for the
mouse. Pen-centric computing, as defined in this workshop, takes advantage of human skill with the
pen, particularly the ability to express smooth, detailed paths quickly; while it often focuses on the
creation and manipulation of diagrammatic languages, it is appropriate for many tasks in which drawn
input is advantageous.

The roots of this vision trace back to 1963, when Ivan Sutherland presented his SketchPad system, a
light-pen-based application that is the ancestor of modern CAD systems. This feat was quickly followed
by similar systems for creating circuit diagrams, mathematical expressions, and architectural drawings.
Though hardware systems were too primitive at the time to realize the vision of these pioneers, the
dream stayed alive.

Thirty years later, once more powerful hardware became available, the first commercial systems were
created. The Wang Freestyle incorporated a pen into its office productivity applications. Go
Corporation's PenPoint, Apple's Newton, and Microsoft's Pen Windows made mobile pen-centric
computing possible on a large scale for the first time. However, none of these systems found
commercial success, and only a few (such as the Palm Pilot and the Anoto pen) survive today.

The attendees at this workshop are united by the question, "Why did pen-centric computing fail?" The
reasons appear to be many. Many of the above companies were plagued by business and patent
problems. The recognition algorithms of ten years ago were immature, and computer hardware was
not sufficiently powerful to perform recognition quickly. The bottom line, however, is that none of the
above tools met users' needs at a price point low enough to bring about widespread adoption.

Today, there are signs that pen-centric computing is closer to becoming a reality. Microsoft's Tablet PC
has established a beachhead as a commercially viable platform for pen-centric applications. Batteries,
displays, and computing hardware continue to improve. There is increasing demand for software that
manipulates complex data, such as images, 3D models, and video, which may benefit from pen input.
Also, algorithms for handwriting and voice recognition have improved significantly and new machine
learning algorithms are available. With all this new technology available, the community is faced with

the question of how to put it to work. And indeed, the question of what work to do with it remains
unanswered.

To address these questions, the workshop gathered researchers with a number of different
perspectives. Many are engaged primarily in the development of systems that interpret various visual
languages, including mathematical expressions (Zeleznik, Miller, LaViola, van Dam, Tausky & Lank),
chemical diagrams (Zeleznik, Miller, & van Dam), digital circuits (Alvarado), analog circuits (Sezgin,
Stahovich), dynamic systems (Simulink) diagrams (Stahovich), mechanical systems (Stahovich),
engineering drawings (Varley), concept maps (Saund), data structures (Koile), probabilistic networks
(Sezgin graphs (Sezgin), and a host of others (using Hammond's LADDER framework). Other
researchers are more engaged in the human side of the interface, with experience investigating new
ink application metaphors and low-level interaction techniques (Buxton, Gross & Do, Alexa & Nealen,
Markosian & Wang, Landay & Davis, Zhai). Also present were several industry and government
representatives who gave valuable perspectives (Bricklin, Buxton, Morrison, & Oka).

The pages that follow present a detailed account of discussions held during the workshop. The first
section lists areas of agreement, points that were generally accepted by all present. The next section
presents areas of contention between participants. In most cases, this contention is brought about by
the conflicting demands of pen-centric computing, and the section is organized as a set of axes along
which any real system must strike a balance. Following this, a discussion of future directions addresses
community as well as research issues. The document ends with conclusions and a short list of
technologies and formats mentioned during the workshop.

Areas of Agreement

Although a broad range of perspectives was present at the workshop, a number of areas showed
general agreement, especially the need to identify good applications of pen-centric computing and to
focus efforts on those applications. There was also consensus that the absence of conventions for low-
level interaction techniques in pen-centric computing is hindering the development of new applications.
Handling of recognition errors was also widely recognized as a common interface problem. Finally,
most workshop attendees recognized the need to continue exploring new hardware configurations for
pen-centric computing.

Application area identification

The attendees present were not trying to identify the "killer app" that would create demand for pen-
centric computing. In reference to the search for a killer app, one participant pointed out, "You'll know
it when you find it." Instead, participants thought it best to look for tasks in which the absence of a
pen is noticeable, perhaps painful. The pen becomes promising when the absence of a drawing tool is
painful, i.e., when a keyboard and mouse interface focus too much of a user's attention on precision.
The pen is also attractive when being tied to a keyboard and mouse is painful, as in many mobile
applications. Some pointed out that the pen was appealing when manipulating data with many
dimensions, e.g., whenever a time dimension is added.

Many of those present found education to be a particularly interesting application area. Students are
encouraged to draw as part of learning many subjects, and pen-centric applications have the potential
to make "frightening" or "boring" disciplines like science, math, and engineering more engaging. Much
of the research in this area gives students the ability to create diagrams and to explore them using
simulation and animation (e.g., logic circuits (Alvarado), music (Zeleznik & Miller), calculus (LaViola),
graph algorithms (Sezgin), and other domains (Hammond)). Other research focuses on the
development of tutoring systems that can recognize students' drawings and give appropriate help when
they are solving problems (e.g., Stahovich's tutoring systems for analog circuits and statics). There
were also examples of systems that transform diagrams into more physically accurate representations
(e.g., chemical diagrams (Zeleznik & Miller)), and systems that collect and categorize student
responses during lecture to enable instructor feedback (e.g., data structures, (Koile)).

Participants also found design applications to be a promising area. Many participants presented
systems that support faster drafting or editing of designs. FiberMesh (Alexa & Nealen) and Jot (Wang &
Markosian) supported drafting of 3D models, and SilSketch (Alexa & Nealen) allowed 3D models to be
posed by manipulating silhouettes. Stahovich presented three systems that used sketching as a fast
input to simulation systems (AC-SPARC for analog circuits, Sim-U-Sketch for Simulink models, and

2007 Invited Workshop on Pen-Centric Computing 2

Microsoft Center for Research on Pen-Centric Computing

VibroSketch for mechanical systems). Varley presented ParSketch for fast production of mechanical
drawings. Finally, Tausky & Lank presented MathBrush for fast input of mathematical expressions into
a computer algebra system.

Rough sketches were also seen as particularly useful during early design stages. Participants pointed
out that individuals think and communicate better with rough sketches than they can with formal
computer models. Also, teams can collaborate better around rough prototypes that they can
manipulate together. Several participants presented systems that took advantage of these properties of
sketches. Gross & Do presented many examples of such systems, including VR Sketchpad for
collaborative annotation and lighting design of 3D architectural models, and Design-o-saur, Furniture
factory, and FlatCAD for fast sketching and fabrication of rough 3D objects. They also presented the
Electronic Cocktail Napkin, in which users compose their own rough spatial grammars for exploring
complex systems. Landay and Davis also presented two systems, DENIM for web site designs and K-
Sketch for short animations, both of which left content in rough form to foster creative thinking.

Finally, there was a general consensus that the existence of pen-centric games would spur the
adoption of pen-centric computing techniques. One example of an attempt to build a professional-
quality pen-centric game was given (InkBattle). Simpler (possibly end-user created?) games such as
"Line Rider" are also promising.

Well engineered low-level interaction language

Many participants lamented the continuing confusion over which low-level interaction methods to use in
pen-centric applications. Many techniques have been proposed, but they are often difficult to
generalize. The community needs to rally around a set of techniques in order to reduce the design and
development time of new applications and to reduce the time needed to learn a new interface. Several
interaction techniques were presented at the workshop including flow selection or "Cheshire Cat"
selection (Gross & Do), overtracing (for selection, emphasis, or editing) (Gross & Do, Alexa & Nealen,
Wang & Markosian), use of pressure (Gross & Do, Alexa and Nealen), a transparent window (for
capturing traces of screen items) (Gross & Do), and a flick + mnemonic method for executing
shortcuts (Zeleznik & Miller).

Recognition technology improvement

Participants were in general agreement that recognition technology was flawed and that the interfaces
for recovering from errors could make or break a pen-centric application. Interfaces should make it
easy to correct recognition problems and should avoid depending on correct recognition if possible.
Some participants (Alvarado, Landay) proposed the use of Wizard of Oz testing to help designers
observe the effect of recognition errors on users and design appropriate recovery interfaces.

Continued exploration of new hardware configurations

Though most participants designed their software for "slate"-style devices (e.g., the Tablet PC without
the keyboard), no participant thought that pen-centric computing should be limited to such devices.
Participants expressed interest in wall displays, table-top displays (some with camera sensors), multi-
modal systems (usually speech and pen), and multi touch. Some participants (Sezgin, Stahovich) were
engaged in (or attempting to engage in) research with such systems.

Areas of Contention

Though there were many points of agreement between participants, there was also a great deal of
spirited discussion. Because of their different perspectives, many participants chose different tradeoffs
between the many conflicting demands of pen-centric applications. Here, we list the most important
areas of disagreement that emerged during the workshop and document some of the tradeoffs chosen
by various participants.

Mimic pen and paper vs. move beyond pen and paper

Should pen-centric applications seek to take advantage of users' experience and skill with traditional
pen and paper, or should these applications seek to provide a new kind of experience? Participants saw
advantages to both options and were split regarding which deserved more attention at present. Some

2007 Invited Workshop on Pen-Centric Computing 3

Microsoft Center for Research on Pen-Centric Computing

wanted to move to a day when humans and computers can recognize the same diagrams. This
preserves the free-form nature of sketching which stimulates creativity. If the systems can recognize
existing diagrammatic languages, they can also take advantage of users' existing knowledge, making
them easier to learn and use.

On the other hand, some participants noted that constraining or streamlining an input language may
allow systems to recognize it more accurately or remove the need for recognition technology
altogether. Simplifying an input language can also allow users to sketch diagrams faster. A few
participants felt that holding to old diagrammatic conventions was not even important, since
technology constraints could influence the evolution of diagrammatic languages. In any case, most
participants agreed the choice of whether or not to streamline an input language should be determined
ultimately by the tasks users need to accomplish with a particular system.

Training vs. "walk up and use" interfaces

A related question is how much time users should spend learning to use a pen-centric application.
Some participants stressed that there are times when the benefits of learning a new, streamlined input
language will outweigh the costs. An analogous example is a bicycle: the benefits of bicycles over
tricycles justify the time spent learning to ride a bicycle. The question then arises, what form should
training take, and can it be made more efficient or enjoyable? Zeleznik and Miller created training
sheets that guided users through the process of creating visual language elements and provided links
to more detailed help. For commands issues through menus, they also tried showing animations of
gestures that could accomplish the same command. Zhai pointed out that games might be useful as
training devices.

However, many users have little or no time for training. Zhai pointed out that most users will not take
time to learn a new method for entering text. Koile wanted to avoid interrupting the flow of her classes
with training. Saund wanted users to become proficient with his tool after only a few minutes of
observing another person using it. Building a system that requires no training is particularly
challenging. Current recognition technology is seldom up to the challenge, but several participants
presented designs that kept input languages simple and provided additional functionality through
special widgets (Wang & Markosian, Landay & Davis, Zeleznik & Miller).

Leave things rough vs. beautify

Another related question, specifically for systems that support text input or diagramming, is whether a
pen-centric interface should leave user input in rough form or convert it to a more precise or polished
form. There were many voices in support of leaving content in rough form. As mentioned above, the
imprecision of a drawing can often facilitate the expression of an imprecise idea. This fact seemed to
be a factor in the demise of structured editors that were a popular research topic at one time. Bricklin
noted that Go's PenPoint supported handwriting recognition, but it was slow, inaccurate, and in the
end, few people used it. Zeleznik and Miller conducted a study in which they compared interfaces that
beautified user-drawn math expressions or left them in rough form. They found that leaving input in
rough form was preferred by users; though placing a small, beautified version near the rough version
was often helpful.

Other users pointed out once again that the decision of whether or not to beautify is dependent on the
tasks that users are meant to accomplish with a particular system. Several users presented systems
that did beautify user input after it was created. Saund was interested in moving back and forth
between rough and beautified forms.

Task-specific interfaces vs. reusable components

The need for designers of pen-centric interfaces to pay attention to user tasks was a recurring theme
in this workshop. Some speculated that pen-centric systems have been unsuccessful in part because
designers and developers have not focused enough attention on meeting real user needs. Bricklin
stated that Go PenPoint failed in part because no vendor provided an application that met a real user
need at an affordable price point. For this reason, it is not surprising that many of the interfaces
presented were designed with specific tasks in mind.

Yet there is good reason to focus attention on creating reusable components that interoperate
elegantly. Go's PenPoint, for example, provided support for sharing ink data between components

2007 Invited Workshop on Pen-Centric Computing 4

Microsoft Center for Research on Pen-Centric Computing

running in different parts of the same screen. Gross and Do noted that a "generic" inking interface is
important, because users often do not know the purpose of a drawing at the time they create it.
Another participant pointed out that it is common in the real world for people to appropriate a tool
intended for one context for use in another. Landay added that pen-centric interfaces can be designed
around this phenomenon using activity-based design methodologies. Thus, the need to focus on real
user tasks does not prevent designers from using reusable components, though it may complicate the
design process.

Explicit vs. implicit modes in inking

No participant claimed that modes could be eliminated altogether, but should designers attempt to
switch between them without explicit user commands? Much of the work presented at the conference
can be differentiated by how it answered this question. Landay & Davis favored explicit mode switching
and pointed to research that compares different methods for switching modes. Alexa & Nealen
designed an application with implicit modes but added explicit modes later in response to user
confusion.

Implicit modes remain attractive for many reasons however. If a system can detect users' intent
accurately, implicit switching can allow more fluid interaction than explicit switching. Zeleznik & Miller
explored this type of mode switching in their Fluid Inking system. Saund presented a system that
attempts to infer a user's desired mode, but prompts the user for input when their desire is unclear.

Recognition techniques

Some participants gave details about their approach to segmentation, recognition, and determining 3-D
structure from 2-D drawings. We close this section with a very brief comparison of the recognition
approaches presented at the workshop.

Common threads: Participants generally preferred recognition technologies that required no training.
Hammond pointed out that training should be avoided because many students might use a single
machine in educational environments. Some, however, found that training was unavoidable (e.g.,
Tausky & Lank). van Dam mentioned that it was possible to avoid training but still adapt to a user's
style by watching how recognition errors are corrected.

Most participants ignored timing information in their recognition algorithms, but a few thought it was
important to take advantage of timing. Sezgin used Hidden Markov Models and Dynamic Bayesian
Networks to learn temporal patterns in individuals' stroke orderings, and these patterns were used to
improve recognition accuracy. Varley used stroke order in interpreting engineering drawings. Stahovich
used timing information to segment lines.

Specific approaches: Alvarado used a single-stroke classifier as a pre-recognition step, followed by
grouping step. She diagrammed her approach as follows.

Sezgin used a single-stroke classifier that took advantage of individuals' temporal ordering patterns (as
mentioned above).

2007 Invited Workshop on Pen-Centric Computing 5

Microsoft Center for Research on Pen-Centric Computing

Saund used perceptual grouping rules and structural modeling. The following slide described his
approach concisely.

In a pre-workshop presentation at UCLA van Dam gave the following picture of his group's approach to
recognition.

Tausky & Lank gave this picture.

Stahovich also gave a detailed account of his approach. He starts with segmentation (timing base). He
then uses one of three approaches to symbol recognition: a bitmap-based method, a structural-
representation-based method, and another method based on features extracted from structural

2007 Invited Workshop on Pen-Centric Computing 6

Microsoft Center for Research on Pen-Centric Computing

representation (with a Naive Bayesian approach). The next step is parsing, which is performed either
using geometric differences or ink density. Finally, an error correction step uses the context of diagram
to detect and fix problems.

Participants with systems that produced 3-D shapes from 2-D sketches also had a variety of
approaches. Varley used a multi-stroke recognizer with geometric constraint satisfaction. Alexa &
Nealen would alternate between inflating curves and using them to define or modify feature lines.
Wang and Markosian would also inflate (and smooth) some user drawn-curves. They added other
curves for cutting out geometry and widgets for modifying geometry.

Future Directions

When it came time to discuss future directions, participants had many opinions with varying levels of
agreement. Here, we highlight two themes that emerged in during discussions: common research
obstacles that we face and the need for collaboration. We then list participants' recommendations for
future research direction in three areas, human-computer interaction, software (particularly recognition
software), and hardware.

Common Research Obstacles

Confusion over what pen applications and technologies will be considered valuable continues to be a
major problem. Some expressed frustration that no compelling applications have been created in 40
years of research. A few felt that new design methods were needed, such as activity-based computing
(Landay), or pen-based "Laws of action" (Zhai). Some contented that compelling applications have
been discovered (e.g., Graffiti for text input) but patent issues got in the way. In any case, there was
a general sense that the lack of compelling applications made it increasingly difficult to obtain support
for pen-centric computing research.

Another obstacle we face is the popularity of mobile computing, which is overshadowing laptop-based
pen-centric computing. There are several orders of magnitude more small, mobile devices being sold
than Tablet PCs. With such small drawing areas, these mobile devices are not optimal for pen-centric
computing.

Need for Collaboration

Another common theme during discussion was collaboration. There was little agreement on what form
this collaboration should take, but many had the sense that the community could produce higher-
quality results if members could build on each other's work. Buxton stressed that Sutherland was able
to build SketchPad in 1963 because many people at Lincoln Labs were sharing their work and building
on each others' techniques. To make this happen today, Buxton argued that we need a common vision
of where we are going, how to get there, and how to give members the necessary incentive to
contribute to the community.

Several participants were engaged the building tools and toolkits that they hoped to share with the
community. Sezgin described a probabilistic graphical model builder for recognition systems. Hammond
presented GUILD and LADDER which greatly simplified the development of a class of pen-centric
applications. Zeleznik, Miller, and van Dam also mentioned that they were working on an application
framework called the *Pad toolkit.

In the last session of the workshop, there was some discussion about the requirements of a common
tool/SDK/framework for pen-centric applications. Saund expressed a desire for a good system that
abstracts away hardware, analyzes ink, and computes trajectories of ink strokes. Alvarado stressed
that it should define a set of data types that could be shared across applications, and asked for a
shared ink format. Landay warned that any such work should take into account previous work in inking
toolkits and file formats, including Satin, Jot, and InkML. Another participant pointed out that similar
efforts have failed in the virtual reality community. In order for such a project to succeed, it needs to
involve multiple researchers with diverse (but overlapping) interests, support multiple platforms, gather
ideas from other similar systems, and foster the creation of shared code and tools.

2007 Invited Workshop on Pen-Centric Computing 7

Microsoft Center for Research on Pen-Centric Computing

Research Directions

Ideas for future research directions varied widely. Here, we attempt to collect them into a coherent
structure, but do not explain them in detail. Most have their roots in discussions that were presented
earlier in this document.

Human-Computer Interaction

User
Training methods for character, symbol, and gesture sets
Activity-based approach to design (focuses on three levels: activities, actions, and
operations)

User interface
Low level interaction techniques

Distinguishing commands from content
Reserved gestures, reserved areas, or "punctuation"?

Timing of recognition
Continuously, after time delay, after every stroke, or when user initiates?
Novel techniques (e.g., multi-modal w/speech)
Using "Laws of Action" to design techniques

Issues with feedback
How to use subtle forms of feedback (e.g., color, transparency) effectively?
How much should users be exposed to recognition process?
How should alternative interpretations be presented?
How can feedback indicate pen mode?
Handling imperfect recognition

Higher level design issues
New metaphors for manipulating things other than paper documents
Enhancing existing apps vs. creating new apps
Visual Languages: how to enhance existing notations?
How to go about shortcut customization?

Software

Recognition Techniques
Character, symbol, and simple gesture recognition
2D expression parsing

chunking and phrasing
segmentation/containerization

defining scope for groups
Use of temporal patterns in recognition
Which techniques work best for which problems?

rule-based? graph matching? Bayes nets? Markov Random Fields? Conditional
Random Fields? hierarchical grouping?

What techniques are suitable for arbitrating among alternative interpretations?
What are the best ways to parse network-like diagrams?
How can similar sketches be aggregated?

Software Engineering
Managing complexity of data (links between possible interpretations and multiple
renderings)
How to stay responsive to user input in presence of compute-intensive recognition?

Hardware

Drawing surfaces: precision, surface feel, pressure
Buttons on stylus and tablet
Parallax for display tablets
Better designs for attaching (or detaching) keyboards
Weight, battery life, and robustness
E-paper

2007 Invited Workshop on Pen-Centric Computing 8

Microsoft Center for Research on Pen-Centric Computing

Conclusions

This workshop brought together researchers and representatives from industry and government
to discuss the future of pen-centric computing. Participants shared a definition for pen-centric
computing, but had very different perspectives. We have outlined points of agreement between
researchers, areas of differences among them, and their thoughts on future directions.

Most participants strongly agreed that the workshop was valuable, and many commented on how
important it is to get support from colleagues at such a venue. Most also agreed that the
workshop had the right length and pace, with ample opportunities to pose questions and try
demos. Many commented on the value of bringing in Dan Bricklin's and Bill Buxton's historical
perspectives, as well. Finally, there was nearly universal approval for the effort put into providing
working demonstrations during the workshop.

If similar events were to be held in the future, however, there were clear areas for improvement.
Many left with a sense that the community has not united itself around common goals, methods,
or tools, and had hoped that the workshop could accomplish more. Some suggested allocating
more time to discussion and brainstorming sessions. Others complained that public discussion
during the workshop was dominated by senior figures and focused too much on the past. Feelings
were mixed about the value of the final panel discussion for similar reasons.

In spite of these difficulties, it is clear that workshops such as this one are vital to the heath of
the pen-centric research community. Every workshop participant surveyed said that they would
like to attend a similar event in the future. Who will step forward and take responsibility for the
next event?

2007 Invited Workshop on Pen-Centric Computing 9

Microsoft Center for Research on Pen-Centric Computing

